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Abstract

This paper is devoted to the normalized solutions of a planar L -critical
Schrédinger-Poisson system with an external potential V (x) = |x|2 and inho-
mogeneous attractive interactions K (x)e(0,1). Applying the constraint var-
iational method, we prove that the normalized solutions exist if and only if the

interaction strength a satisfies ae(O,a*):: ||Q||22(R2) , where QO is the
unique positive solution of Au—u+u’=0 in R?. Particularly, the refined

. LR . LR . . . . *
limiting behavior of positive minimizers is also analyzed as a ./ a’.

Subject Areas

Mathematics, Partial Differential Equation

Keywords

Schrodinger-Poisson System, Logarithmic Convolution, Inhomogeneous
Attractive Interaction, Normalized Solution

1. Introduction

In this paper, we study the following inhomogeneous elliptic equation with a

power potential and a logarithmic convolution potential
—Au +(|x|2 —,u)u +<ln|x| *u2>u = aK(x)|u|z u in R?, (1.1)

where g eR isan uncertain Lagrange constant, a >0 denotes the strength of

attractive interactions, and K (x)>0 gives the spatially inhomogeneous attrac-

tive interactions. Under the standing wave ansatz (x, t) =e"u (x) ,where i is
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the imaginary unit, it is well known that (1.1) can be obtained from the time-

dependent Schrodinger-Poisson system

iv, —Al//+|x|2 v+ Aloy = aK(x)|t//|2 v in R*xR,
Aw= |1//|2 in R*xRR,

where y:R*xR — C is the time-dependent wave functionand AeR isa pa-
rameter. The function @ represents an internal potential for a nonlocal self-in-
teraction of the wave function y , and the nonlinear term |l//|2 v is frequently
used to model the interaction among particles [1]-[3]. In the past several decades,
this system, as a cross-disciplinary model bridging quantum mechanics and clas-
sical electromagnetism, has garnered great attention owing to its physical rele-
vance. It originates from quantum mechanics [4]-[9] and especially semiconduc-
tor physics [10] [11]. We would like to mention the results [12]-[15] for normal-
ized solutions of inhomogeneous elliptic equations, and [15]-[18] with references
therein for the Schrédinger-Poisson systems.

In order to investigate the normalized solutions of (1.1), we define the energy

functional
E, (u)= l.[Rz UVM (x)|2 +|x|2 u’ (x)]dx
IRZI 1n|x y| dxdy——j 4(x)dx.

Due to the power potential term and the logarithmic convolution term, £, is

a

not well defined on H' (]RZ) . Stimulated by [14], we consider the space X sat-
isfying

X = {u € HI(RZ):"u = (IRZ |x|2 u’ ()c)dx)E <oo}

with the associated norm
1

e, = { Joo 9 (1o (x)}dx}z ueX.
Recall from ([19], Lemma 3.1) that for any pe [2,00) R
X is compactly embedded into Z” (R2 ) (1.3)

As performed in [20], we decompose the logarithmic convolution term as below:
u) = .[]RZ ij ln(l + |x - y|)u2 (x)u2 (y)dxdy,

)=l ] ln[1+|x 1y|] () () dcy,

and
F (u)—F2 (u) = .LRZ J.RZ 1n|x—y|u2 (x)u2 (y)dxdy.
In what follows, we use ||||p to denote the standard Lebesgue norm on
rr (]Rz) . Since
ln(l+|x—y|) < |x—y| < |x|+|y|, x,yeR?,
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cwe derive from the Holder inequality that
1)< [ oo (sl o) () () vy < 2

From the fact that 0<In(1+7)<r holds for all »>0 again, we can deduce

(1.4)

from the Hardy-Littlewood-Sobolev inequality (cf. [21]):
[ (ol ()] ||v ) s
Jo o= oy L= Clulelle wver (B?). (15)

that there exists a constant C >0 such that

<] [ )

It follows from (1.4) and (1.6) that IRz .[RZ ln|x - y|u2 (x)u2 (y)dxdy is well de-
finedon X.

Throughout the paper, we assume that the inhomogeneous attractive interac-
tions K (x) satisfy that

0<K(x)<1 and K(0)=supK(x)=1. (1.7)

xeR?

|x y| dxdy < C"u"s , UE L3 (Rz) (1.6)

Hence E, is well defined on X . In the following we focus on studying the

minimizers of the constraint variational problem:
e(a)::lurgEa (u), (1.8)
where the manifold S is defined by
S:={u eX:LRZuZ(x)dle}.

The main purpose of this paper is to prove the existence, nonexistence and the
refined limiting behavior of minimizers for e(a). The proof is closely related to
the unique (up to translations) positive solution Q(x)= Q<|x|) of the following
elliptic equation (cf. [22] [23]):

~Au+u=u’, ueHl(Rz). (1.9)

Note from [23] that the function Q(x) satisfies exponential decay in the sense
that

Q( ), (|x|)|:O(|x|_2er as |x|—>oo. (1.10)

In addition, we also need the following Gagliardo-Nirenberg inequality (cf.
[24]):

foolu ()] < o [ Nu(f axf () v we ' (R?), (1)

2
where the equality is achieved at u(x) = Q(|x|) . We can derive from (1.9) and
(1.11) that

VO dr=[, 0" (¥)as =3[ 0" (x)a. 112)
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Applying the above facts, we can establish the existence and nonexistence of
minimizers for e(a).

Theorem 1.1. Let Q(x)=0(|x|) be the unique positive solution of (1.9) and
i ~lok.

DIf ae (0, a*) , then there exists at least one minimizer of e(a);

DIf ae (a*,oo) , then there is no minimizer of e(a) and e(a)=—o;

3)If a=d” and 1- K(x) = O(|x|2) as x — 0, then there is no minimizer of
e(a) and e(a)=—o.

Moreover, there holds lim e(a)=—c when 1-K(x)= O(|x|z) as x—0.

Suppose that u, isa minimizer of e(a) for ac (O,Ll*) , then according to

the variational theory, u, satisfies the following Euler-Lagrange equation:

a

—Au, +|x|2 u, +IR2 ln|x—y u’ (y)dyua =uu, +aK(x)|ua|2 u, in R*, (1.13)

where p, € R denotes the Lagrange multiplier and satisfies

1
u, = 2e(a)+5.|.]RZ " In|x = y|u? (x)u] (y)dxdy—%_[]Rz K(x)ujdx. (1.14)

That is, u
get that

) =K, (ua ) > we
is also a minimizer of e(a). Together with the strong maximum

is a normalized solution of (1.1). Noticing E, ( u,

a

u

a

principle, we next mainly discuss the limiting behavior of positive minimizers.

Theorem 1.2. Assume that u, is a positive minimizer of e(a) for
ae((),a*) and 1—K(x)=0(|x|2) as x—0. Then

a —a a —a
lim 2 —u | 2 —x+x, [=0(x) in X,
a/a" \/ a a( \/ a ] Q( )

where x, is the unique global maximum point of u, as a./a’.

The proof of Theorem 1.2 requires a series of analysis. We have to overcome
the sign-changing property of the logarithmic convolution term. We shall derive
the following crucial estimate: there exists a constant C >0 such that for any
xeR? andforall ae (O,a*) , there holds

I .
In| 1++—— |v, (y)dy <C,
Je [ Ix—ylj )
where v, is a suitable scaled function of the minimizer u, .
We organize the next of this paper as follows. In Section 2, we prove Theorem
1.1 on the existence and nonexistence of minimizers for e(a). In Section 3, we

prove Theorem 1.2 on the refined limiting behavior of positive minimizers for

e(a) as a/ta".

2. Existence and Nonexistence of Minimizers

In this section, we shall complete the proof of Theorem 1.1 by applying the
Gagliardo-Nirenberg inequalities and the properties of Q(x) .

Proof of Theorem 1.1. 1). Forany p>2 and ueH' (Rz), there results the
Gagliardo-Nirenberg inequality (cf. [24]):
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2o,

"””ps{ - ](IR2|W|2dX)Z”(IRz|”|ZdX)", 2.1)

where O, is the positive ground state solution of the following elliptic equation

Au+u=u"", ueH' (Rz).

By (1.6) and (2.1), we derive that there exists a constant C >0 such that

1
Fy(u)< C(IR2 |Vu|2 dx)2 , ues. (2.2)
Under the assumption (1.7), we deduce from (1.11) that
2
.[RZ K(x)u'dr < .[RZ udx < = .[RZ |Vu|2 dx, ues. (2.3)

Notice that F,(u)>0, we infer from (2.2) and (2.3) that for u€ S,

1 1 5
E, (u)z(g_z‘;*) v acs L ([ v o, @

which implies that E, («) is bounded from below on S when ae (O,a*) .
Letting {u,} =S be a minimizing sequence of e¢(a) for ae (0, a*) , We can

know from (2.4) that IR2|V”n *dx and J'R2|x|2 u’dx are bounded uniformly

with respect to 7. Since J.RZ u;dx =1, we then obtain that {u,} isbounded uni-

formlyin X . By (1.3), there exists a function u € X such that
u, ~u in X and u, >u in L’ (]Rz) for p e[2,0),

which implies that
[owide=1and lim [, K (x)uyde= [, K (x)u'dr.

Then we obtain that u €S . Furthermore, according to ([20], Lemma 2.2), we

have
.[JRZ J.]RZ ln|x —y|u2 (x)u2 (y)dxdy < lir:Liilf IRZ I]RZ ln|x —y|uf (x)uj (y)dxdy.

Together with the weak lower semicontinuity of norm, we then deduce from
above that
e(a)<E,(u)<liminf E, (u,)=e(a),

which yields that E, (u)=e(a). This indicates that u is a minimizer of e(a)
for ae (0,a*) .
2). Consider the function

u, (x) =%Q(rx), 7>0.

Then u, €S forall 7>0.We deduce from (1.12) that
2

e(a)<E, (ur)::—a*J'R{l—%K(fﬂQ“ (0)av+ b 0 (x) s

T
. (2.5)
s [ [l = 10 (1) Q* (v)dxdy - L Inz.

4(a*)
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Through (1.4), (1.10), (2.2) and the assumption (1.7), we obtain from (2.5) that
e(a)<limE, (u,)=-0 fora>a,

which implies that there is no minimizer of e(a) and e(a) =— when a>a’.

3). For the case a=a", we infer from (2.5) that
7’ X
e(a)SEa(u,):mjkz{l—K(—)}Q (x )dx+2 . *jmz| [ 0*(x)dx

—— [ [ nfx-y]0* (x)0? (y)dxdy——lnr

(2.6)

4()

In virtue of (1.10), we can take 6 >0 satisfying I

- ,0'dx <77 . Hence we get
from (1.7) that

72 X 4 1
ﬁjw[l_lf(?ﬂg (x)drs o

By the assumption that 1-K(x)= 0(|x|2) as x>0, we have

7 x )| 4
EJK‘S[I_K(?HQ (x)dx<C as 7>,

Therefore, we obtain from (1.4), (1.10), (2.2) and (2.6) that
e(a )<11mE (u,)=—n,

7w 4

which means that there is no minimizer of e(a*) and e(a*) =—0w0,

1
In addition, for ae (O,a*) , choosing 7= (a* - a)_E in (2.5), we get

(@)= 4(—)1[ k() lot (v b 0 ()

—— [ —y]0* (x)0? (y)dxdy——lnr

(2.7)

( )l

One can also obtain from the assumption 1-K(x)= O(|x|2) as x>0 that

2
%jk{l_K(zﬂgqx)dxsc asala.
4(a’) ’

Thus we obtain from (1.4), (1.10), (2.2) and (2.7) that li/m* e(a)=—o0. This
completes the proof of Theorem 1.1. e

3. Limiting Behavior of Minimizers

In this section, we shall prove Theorem 1.2 on the limiting behavior of positive
minimizers for e(a) as a ./ a . We first establish some estimates for the posi-
tive minimizers of e(a) as a./a’.

Lemma 3.1. Assume that u, is a positive minimizer of e(a) for ac (O,a*)
and l—K(x):0(|x|2) as x—>0. Let

g, = (Imz

’ dx);, (3.1)
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v, (x)=¢gu,(e,x+x,) in R? (3.2)

where x, is a global maximum point of u,. Then [(1)]

1) &, >0 satisfies

g, —>0and ue —>-1asaa; (3.3)
2) There exists a constant 7 >0, independent of a € (O,a*) , such that
JBZ(O)VZ (x)dx>7n asa . a’; (3.4)
3) v, satisfies
v (x)—)L (|x|) in H' (Rz) asa/ a’; (3.5)

NP
4) There exist a large constant R >0 and a constant C >0, independent of
a, such that
24
|v |<Ce 3 for |x|>R asa/'a . (3.6)
Proof. 1). Through (2.2) and (2.3), we have

e(a)=F, (u,) 2" e, ~Ce, 2 =Ce,'

Together with the fact li/rn* e(a)=—o0 inTheorem 1.1, we obtain that &, —0
as a/'a . o

By (3.1), we have

e
22

ga 1 2 2 a&‘u 4
_TJ.RZ J.]Rz ln[1+mJua (x)”a (y)dXdy_TIRzK(X)ua (x)dx

gaze(a) |x| x)dx+—_[szRzln l+|x y|) x)u (y)dxdy

(3.7)

Since ¢, >0 as a /" a , we derive from (2.2) that
” EIRZIRZIH[Hl 1 J 2(x)ul(y)dvdy<Ce, >0 asa/a’.  (3.8)
xX=y

Note from (2.3) that
1 aé‘j 4

E[I—T.[RzK(X)ua (x)dx]ZO (3.9)

Hence we deduce from (3.7)-(3.9) that liminf & e(a)>0. Using the fact that

hfm e(a)=-» again, we have limsupe, 2¢(d)< 0. Therefore, we conclude that
as a /'

hfrarl f;ae(a) =0. (3.10)

Furthermore, one can obtain from (3.7)-(3.10) that

2 .
ah/r? g - K (x)uldx = = ah/ril s,fIRz |x|2 u’dx =0, (3.11)
al%l 85IR2 .[RZ ln(1+|x—y|)u2 (x)uj (y)dxdy =0. (3.12)

Note from (1.14) that
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2
H, j = 2gje(a) +%IR2 .[RZ ln|x —y|u§ (x) uj (y)dxdy
5 (3.13)
ag;
_T-[RZ K(x)u: (x) dx.
Together with (3.8) and (3.10)-(3.12), we conclude from (3.13) that ,uagj — -1
as a/a .

2). Due to (1.13) and (3.2), we see that v, satisfies

—Av +¢&° 2 Vv (y)dylv + &2 lng v
a a a (_[RZ a (y) y) a a a’ a (314)
=g uv, +aK(g,x+x,)v. in R%
We use |||| to denote the standard norm on H' (Rz) . Note that
v [ Juldy =2. (3.15)

There exists a constant C >0 such that forany xeR* and ae (0, a*) ,

1 2
.[RZ ln[1+|x_y|Jva (v)dy
J“v y‘<1|x J"x y‘>l

x— y|
(3.16)
1
3 2
-[‘x y‘<l 5 (J“x y‘<l a ) + »[‘xfy‘zl Va (y)dy
<c|m[f <c.
Thus we infer from (1.7), (3.3), (3.14) and (3.16) that
—Av, +§va -a"v:<0 inR* asa a’. (3.17)

Since x, is a maximum point of u,, the origin is a maximum point of v,
for ae (0, a*) , which illustrates that —Av, (0)>0 for ae (O,a*) . Thus we get
from (3.17) that there exists some constant >0, independent of a, such that
v,(0)=2B>0 as a./ a . Applying the De Giorgi-Nash-Moser theory [25], we
derive from (3.17) that there exists a constant C >0 such that

(IB(O 2dx) >Cmax v, >CR:=/n>0 asa /a".

xeBi(0) ¢

3). In view of (3.15), up to a subsequence if necessary, there exists a function
v, € H' (RZ) such that v, =y, in H'(Rz) » V,>V, in L{Z)C(Rz) for
pe[2,0), and v, >v, almost everywhere in R*> as a " d". Furthermore,
we get v, #0 from (3.4). Let o(l) denote the infinitesimal quantities as

a /" a" . Based on the Brézis-Lieb lemma (cf. [26]), we obtain thatas a . a",

v, —v0||j +o(1),

4 4 4

1

K* (gax-i-xg)va

1

K* (gax-i-xa)vo

1

K* (gax-i-xa)(va -v)

+

+0(1),

4 4 4
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and

L= [Vo, [ =I9vall 419, = Voo [ +o (1),

Together with (1.7), (1.11) and (3.11), it yields that

0= lim (jRZWVa

*
asz a

2 dx_%fRz K(gax+xa)v:dxj

= Joal Vool d—tim 2 [ K (g4, ) vpde

+ lim UR Vv, = V,[* dx—%ijK(gaHxa)

v, = v’ dxj (3.18)

Il ) it v, ax=S ol )

> (1=

v, — vO|2 dx) IRZ |Vva - Vv0|2 dx >0.

Therefore, we conclude from (3.18) that

[vol, =1 and [ ,|Vv, =Vv,['dx >0 asa /a’,

which further imply that
v, >V, in HI(RZ) asa/"a.
Additionally, the first equality of (3.18) yields that
2 a ..
LRZ [Vv| dx = ?ah/r? K(x, )IRZ vydx.
Thus we derive from the Lagrange multiplier rule that v, satisfies

—avy+v,—a lim K (x,)v; =0 in R*.

a/\a

The strong maximum principle implies that v, >0 in R”. Through a simple
scaling, the uniqueness (up to translations) of the positive solution of (1.9) ensure

that there exists a point y, € R* such that

v (x)= (a* al

It follows from ||vo||2 =1 that li/nl K (x,)=1. Since the origin is a global max-

in K (x,)) *0(}x~ ).

/a

imum point of v,, it is also a global maximum point of v,. This indicates that
¥, =0. Hence we get
v, (x)—> —\/1_ Q(|x|) in H' (R2) asa./a’.
a

This convergence is independent of the choice of subsequences and holds true
for the whole sequence as well.

4). Using the De Giorgi-Nash-Moser theory (cf. [25]), we derive from (3.15)
and (3.17) that

1
21 \2 2
Xlel’ll;fl()é) v, < C(J'Bz(f)vadx) for any £ e R",

where C>0 isa constant independent of ¢ and ¢&. Together with (3.5) and
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(3.15), we get that {v,} is bounded uniformlyin L~ (Rz) and

v,(x)>0 as |x| — oo uniformlyin a /' a’, (3.19)

Combining (3.19) with (3.17) then yields that there exists a large constant
R >0 such that

~Av, +gva <0 for |x|> R uniformlyin a /' a". (3.20)

By applying the comparison principle to (3.20), we can conclude that there ex-
ists a positive constant C >0 such that

24

|va (x)| <Ce 3 for |x|= R uniformlyina a". (3.21)
Thus we complete the proof of Lemma 3.1.
Now we prove the refined limiting behavior of positive minimizers of e(a) in
X as a/"a’.

Proof of Theorem 1.2. Using the exponential decays (1.10) and (3.6), we get
that for any € >0, there exists a constant R >0 such that

2
]

2
2f xf vz () v 2f _Qa(,f) dx < %

Combining this with (3.5) we obtain that
fobe -2
2 2
f, o (-2 o )22

< |R|2 IBR [va (x)- ?/(a_)i)J d.x-i—2J-B;é |x|2 v (x)dx+2J.B;é |x|2 Qza(*x) dx

<e asa/a.

0

Together with (3.5), we can indicate that v, (x)— T in X as a/a’.
a

In older to complete the proof of Theorem 1.2, we next need to prove that

g, =2,/ =2 (1+0(1)) asa . (3.22)

a
a

Firstly, we derive the upper estimate of e(a) as a /" a’. Setting
1
a P
r=|—2 | 50
4 (a - a)

e(a)S%—%lna*+%ln4(a* —a)

into (2.5), we deduce that

1 (323)
* .[Rz J.Rzln|x_y|Q2 (JC)Q2 (y)dxdy+o(l) asa/a .

T
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In Addition, using (1.10), (3.5), (3.6) and (3.16), we obtain that

O 00()

.[JRZ a2 ln|x—y|v§ (x)v (v)dxdy —IRZ -[R2 ln|x—y dxdy

- [IRZ R? In
(fRzLRzlnlx HEWC W) gy [ ol (2 )v(y)dxdyJ

<[] 1n|x—y|(vaZ (x)—@] v2 () drdy

v (x)vi (y)dxdy — J.]RZ

Qzagx) v, (y)dxdyJ

Rr?

el lnlx—ylw[vi (y)—@jdxd (3.24)
< b2 (- Qa(x a2 (- L] oz )y
LRzJRz v; ( Qza{x) dudy
+LR2|XI x)deZ v2(v)- o (y)dy+a )_Qza(*y)dy
JRzJRz|x T e ()- Wy 50 50

We now give the lower estimate of e(a) as a./ a . It follows from (1.11),
(3.5) and (3.24) that

e(a)=E(u,)

_55;2 UR2|Vva de—%*ijK(gax+xa)v:dx]+% 2 . ? j(x)dx

+llnsa+1J‘R2J.Rzln|x—y|vj(x)vj(y)dxdy

+i(a —a)g ZJR K(e,x+x,)v,dx

1
24(a —a) I vidx+— 1I18 +— _[ J'Zln —y|[v2 (x)v2 (y)dxdy (325)
_az;a(1+o(1))ga’2+zlnea

+ ! 1+o IRZJR21n|x y|Q )dxdy

4(a*)

2l+lln4(a*—a)—llna*

8 8 8

.[JRZJ.]RZI |x y|Q (y)dxdy+o(1) asa . a’,

( )

where the identity in the above inequality is achieved at &, >0 satisfying (3.22),
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Le, €,=2 a :a (1+o(1)) as a ./ a . We now conclude from (3.23) and (3.25)
a
that
1 1 . 1 .
e(a)z§+gln4(a —a)—glna
1 *
+ﬁJ'R2 IRZ 1n|)c—y|Q2 (x)Q2 (v)dxdy asa Ja,
4(a’)
and &, >0 satisfies (3.22). Moreover, because v, —>l in X as a/d",

Ja

we obtain from Lemma 3.1 that

liqu\/a :aua 2\/51 :ax+xa :Q(x) in X.

0/‘0

This completes the proof of Theorem 1.2.

Through relevant proofs and discussions, the existence of minimizers for e(a)
and the refined limiting behavior of positive minimizers for e(a) have been an-
alyzed as a /" a". These mathematical conclusions provide a theoretical basis for
the stability of complex quantum systems and physical phenomena under extreme
conditions. In future research, we can discuss the local uniqueness of constraint

. . . *
minimizers as a /" a" to refine the results.
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